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COLLECTIVE EFFECTS IN A DENSE SYSTEM OF LARGE BUBBLES 

Yu. A. Buevich UDC 532.529 

The rising velocity and interphase transport of a dense bubble swarm in a homo- 
geneous liquid are investigated, along with the motion and external mass trans- 
fer in an inhomogeneous porous medium. 

Under confined-flow conditions the interaction of bubbles forming a dense swarm signi- 
ficantly alters their hydrodynnm~c and mass-transfer characteristics in comparison with soli- 
tary bubbles. The values of the Reynolds number, which Characterizes the flow around soli- 
tary bubbles, are usually large in the majority of real situations, so that the liquid flow 
in the space between bubbles can be regarded as inviscid and potential everywhere except in 
thin boundary layers on the bubble surfaces and in their hydrodynamic wake regions. In this 
article we investigate the two extreme cases in which the influence of surface tension is 
very strong and very weak and, accordingly, the bubbles approach the configurations of a 
sphere and a spherical cap. 

The motion of solitary bubbles of the first type was first studied theoretically in [i, 
2], and their mass transfer with the surrounding medium in [3]. A hydrodynamic model of 
bubbles of the second type was first proposed by Davies and Taylor [4] and was later refined 
by Parlange [5]; their mass transfer with the surrounding medium has been investigated in 
[6, 7], and bubbles of this type have been investigated more in detail in [8, 9]. Collec- 
tive effects have apparently been studied only for spherical bubbles on the basis of the 
well-known cell model [i0, ii]. Below, we investigate these effects by means of the power- 
ful machinery of ensemble averaging and the methods of self-consistent field theory (see 
[12] and the survey [13]). 

Filtration and External Mass Transfer in an 

Inhomogeneous Porous Solid 

We first consider the auxiliary problem of determining the effective permeability of an 
inhomogeneous porous solid comprising a macroscopically homogeneous porous medium ("matrix") 
and discrete porous inclusions, which are also macroscopically homogeneous and are distribu- 
ted in the matrix. The Darcy equations 

O~ =--(ki/~)vPi, d ivO~ = 0 : ( 1 )  

for the local values of the filtration rate Q and the pressure P are valid in the matrix and 
in the inclusions. At the boundaries of the inclusion~ the pressure and the normal component 
of the flow velocity are continuous. It is required to determine the "effective" permeabil- 
ity k, i.e., the coefficient in the equation q=--(k/~)Vp, which relates the mean filtration 
rate to the pressure in the inhomogeneous solid (in the simplest case q and p can be inter- 
preted as the results of averaging Q and P over a "small" physical volume containing a suf- 
ficiently large number of inclusions). 

The statement of this problem is identical to the statement of the problem of determin- 
ing the effective thermal conductivity of a composite material if the pressure is identified 
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Fig. I. Relative rising velocity versus p for 
spherical and cap (p' < p) bubbles, i) Model of 
a moderately dense system; 2) model with a con- 
centric layer of pure liquid; 3) Harrucci equa- 
tion [i0]. 

Fig. 2. Comparison of the theoretical equation 
(14) for a moderately dens~ system with the 
experimental results of [23] on the rising of 
air bubbles in a vertical column filled with 
water. 

with the temperature, the filtration rate with the heat flux, and the ratios ki/~ and k/p 
with the thermal conductivities of the matrix, inclusions, and the material itself as a 
unit whole. We can therefore write at once 

k = ~(~, 9)ko, ~ = kd~,  (2) 

where the function ~ has the same form as in the heat-conduction problem. Within the frame- 
work of the notion~ and method of [12] this quantity is determined by analyzing the special 
problem of an isolated ("test") inclusion immersed in a fictitious medium, whose thermal con- 
ductivity (or permeability) at a particular point depends on the position of the point rela- 
tive to the inclusion, the nature of this dependence being determined by the characteristics 
of the spatial distribution of all the inclusions. For spherical particles B has been cal- 
culated without regard for the mutual impenetrability of the spheres (i.e., for a homogene- 
ous fictitious continuum), with approximation of the true dependence of the properties of 
the fictitious medium on the distance to the surface of the test sphere by elementary power 
functions [i.e., for a homogeneous fictitious medium separated from the test sphere by a 
concentric (with the latter) layer having the same properties as the original matrix], and 
for various forms of the binary distribution function of the spheres. In particular, the 
functions obtained by Kirkwood, Percus, and Yevick have been investigated, along with the 
function corresponding to the hypothesis of a uniform distribution of centers of the spheres 
in the region exterior to a sphere centered at the same point as the test sphere, but with 
twice the radius [14, 15]. The analogous problem for systems containing cylindrical inclu- 
sions has been solved in [16]. It is clear that the results of [14-16] are directly applic- 
able to the immediate problem of the effective permeability. 

The dependence of fl on its arguments and certain analytical expressions for the aver- 
age fields in the vicinity of the test inclusion are given in [14-16]. Here we give expres- 
sions for B and the tangential component of the filtration rate in the matrix at the surface 
of a test inclusion in the case where all the inclusions are impenetrable spheres. These 
expressions are needed below in order to study a system of bubbles. The model of an inhomo- 
geneous medium with a moderate density of inclusions (disregarding the mutual impenetrabil- 
ity of the spheres) is characterized by the relations 

~ = ~ ( 0 ,  9 ) = 1 - - - - 3  P, w~-- qs- =---3 SUsinO, S = ( l _ _ p ) - i ,  (3) 
2 1 - - p  2 

and the approximate model of a very dense medium, in which a homogeneous layer with the 
properties of the matrix is introduced at the surface of the test sphere, corresponds to 
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Fig. 3. Relations (21) 
and (22) for p'/p m i. 
i) Model of a moderately 

dense bubble system; 2) 
model with a concentric 
layer of pure liquid. 

1 l lp+[(5 11p)2+7 (1 p) (17+7p)1I/2}, 
= ~ ( 0 ,  p ) - -  1 7 - F 7 ~  { 5 - -  - -  - -  

ws----q" _ 3 SUsinO, S =  2 ( 1  + 7 6 + 5  ) ,  (4) 
1 - - p  2 :-3 1 - - p  176+7 

where U = B(ko/~)E i s  the  average  uni form volume flow r a t e  in  the  inhomogeneous porous s o l i d ,  
co r respond ing  to a un i form p r e s s u r e  g r a d i e n t  Vp =--E,  and O i s  the  po l a r  angle  in  a coor -  
d i n a t e  system attached to the test sphere (the polar axis is directed upstream). 

The function S is introduced in (3) and (4) so that the dependence of the surface velo- 
city on SU under confined-flow conditions will coincide with its dependence on U~ in flow 
around a solitary sphere. On the basis of the results of [14-16] this function is readily 
determined for other models of a system ofspheres as well as for media containing cylindri- 
cal inclusions. 

The problems of transport toward a solitary impenetrable sphere and cylinder immersed 
in an infiltrable porous medium have been solved for small and large P~clet numbers [17]. 
The various results in [17] correspond to final relations of the form 

S h ~ = / ( P e ~ ,  ~ ) ,  P e ~ - - 2 R U ~  , ? |  (5) 
D D 

where the  parameter  y d e s c r i b e s  the r e l a t i v e  c o n t r i b u t i o n  of  convec t ive  d i s p e r s i o n  a s s o c i a -  
ted  with mixing of elementary streams in the intercepted pore space, and the effective mole- 
cular diffusivity in the porous medium D is determined in this case with regard for the 
sinuosity factor. 

For small P~clet numbers the mass-transfer process between any inclusion and the flow 
is determined by the state of the entire porous medium surrounding the inclusion. Under 
confined-flow conditions the effective convective transfer coefficient and diffusion in this 
medium are determined by the quantities U and BD in exactly the same way as they are deter- 
mined by U~ and D in flow around a solitary inclusion. Therefore, the parameter Sh for con- 
fined flow around many spheres or cylinders is described by the same functions as those 
involved in (5) if 2RU/BD and IU/BD are taken as their arguments (since I m R, the second 
quantity can be set equal to zero in this case). 

For large P@clet numbers the main resistance to mass transfer is concentrated in a thin 
diffusion boundary layer at the surface of the inclusion. The diffusivity in this case is 
clearly independent of the presence of other inclusions, but the velocity in the layer is 
determined, according to (3), (4), or other analogous relations, by the quantity SU, rather 
than by U~. Consequently, Sh is once again expressed in the form (5), but now the arguments 
of the functions f are 2RSU/D and ISU/D. 

The foregoing analysis can therefore be used to extend the results of [17] for the mass 
transfer of solitary spheres and cylinders to large systems of such bodies. If the conduc- 
tance through the skeleton of the porous matrix is small (as is customarily observed for 
granular layers), then all of the preceding conclusions are equally valid for external heat 
transfer in an infiltrable porous medium. We note that the problems discussed here are also 
of considerable independent significance in relation to the requirements of filtration theory, 
the mechanics of saturable soils, petroleum-refining practice, chemical technology, etc. 
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Bubble Rising Velocity 

We now consider confined liquid flow in a macroscopically homogeneous swarm of bubbles 
of equal size, using a coordinate system in which the bubbles are at rest on the average. 
When the shape of the bubbles is close to spherical and the flow in the spaces between them 
is close to potential, the statement of the problem of determining this flow coincides for- 
mally with the statement of the problem discussed above if we now interpret Qo and --Po as 
the local values of the velocity and potential of the liquid and assume that ko/u = 1 and 
kl/~ = 0 [the quantities QI and P~ in this case do not have direct physical significance and 
are regarded simply as the solutions of Eqs. (i); of course, they do not describe the actual 
gas flow in the bubble interiors]. The quantity U represents the uniform average rate of 
liquid filtration in a swarm of impenetrable bubbles. If the bubble rising velocity in a 
coordinate system in which the liquid is at rest on the average is equal to Ub, then clearly 

Ub=UIO__O). (6) 

The force of hydrodynamic interaction of any bubble of the swarm with the liquid flow 
under the conditions of practically nonseparating flow around the bubble is expressed in the 
usual way as the integral, over the spherical surface of the bubble, of the density of forces 
exerted on it by the stresses in the liquid [18]. This force can be written as the sum of 
the effective buoyancy and the force F* produced only by viscous stresses, i.e., 

F = F*--Vdg.  (7) 

If the shape of the bubble does not depend on the presence of other bubbles in the system, 
then the variation induced by the latter in the hydrodynamic environment of the given bubbles 
does not affect the shape and structure of the thin boundary layer at its surface, but is 
felt onl X in the characteristic value of the velocity at the outer boundary of the layer; 
this characteristic velocity is proportional to w s and determines the strain rates created 
in the layer. Inasmuch as the viscosity in the indicated layer does not depend on the exis- 
tence of the other bubbles, the viscous stresses in it are governed by the quantity Ws = SU, 
to which they are proportional. If the flow around the bubbles is almost nonseparating, 
the viscous drag experienced by them will be determined entirely by the indicated stresses, 
i.e., we can put F* =KSU, where the coefficient K in this case, based on the foregoing dis- 
cussion, can be considered to be independent of the presence of the other bubbles (i.e., 
of the quantity p) and is determined from the relation F~=KU~ for a solitary bubble. On 
the basis of (6) we have 

U/U. = F*/SF~, UJU. = F * ~ I - - p )  SU.,  (8) 

so that to determine the dependence of U b on ~ it is necessary to find the analogous depen- 
dence for F*. 

The customary system of phenomeno!ogical equations of motion of the phases of a disperse 
system [19] in the case of steady flow along the vertical coordinate z yields the equations 
(the z axis is directed opposite to g) 

ap 
- -  (1 -- '9) dog + nF* : O, - -  p -~z - -  pd~g--  nF* : O. (9) . - ( 1 - o )  o 7  

Hence we o b t a i n  

ap/az = - -  [(1 - -  p) do + odd gt nF* = p( l  - - p )  (do-- d,) g (10) 

and then 

uduo. = 1/S. 
(11) 

It has been shown in [12] for suspensions and discussed, for example, in [20] that Eqs. 
(9) can also be written in the form 

Op (1 - - p )  dog+nF = 0, - - p d ~ ' - - n F . =  0, (12) 
0z 

from which, on the basis of (8), we obtain the previous expressions (i0) and (ii). 

For small values of p we can take Ub/U~ =i -- ~p, where the models underlying (3) and 
(4) correspond to values of ~ equal to unity and 35/48~0.73, respectively. 
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We now mention a frequently perpetrated error. According to Nicklin [21], under the 
conditions of continuous bubble generation the rising velocity in a vertical column in which 
the liquid is at rest on the average must exceed the above-calculated velocity Ub by the 

amount of the volume flow rate of the gas G, whence it follows that G = p(U b +G), i.e., 
G =OU/(I -- 0), so that the observed rising velocity should satisfy, rather than (ii), the 

relation 

Ub__ 1 
U| (1 - - p ) S  (13 )  

The a r g u m e n t s  o f  [21]  a r e  v a l i d  i n  t h e  e a s e  o f  t h e  a s c e n t  i n  a c o l u m n  o f  a s t r i n g  o f  l a r g e  
"pistons" filling up the entire cross section of the column, in which case the average velo- 
city of the liquid in cross sections situated above and below each piston wholly within the 
liquid is in fact nonzero and equal to G. But these arguments break down in bubble flow, 
where the average liquid flow across any cross section of the column continuously intercep- 
ted by the bubbles is equal to zero. The fallacy of these arguments in application to the 
case under investigation and of the expression (13) based on them has been noted previously 
in [22] (see the footnote on p. 418). 

The dependences of U/U~ on p for the models underlying (3) and (4) are shown in Fig. i. 
Also shown is the dependence obtained by Marrucci [i0] on the basis of a calculation of the 
dissipation in the unit cell around a spherical bubble. This dependence describes the asymp- 
totic behavior as the Reynolds number tends to infinity, subject to the condition that the 
bubble preserves sphericity. The analogous curves for large but finite values of the 
Reynolds number lie somewhat below the one shown here [ii]. 

For the volume flow rate of the disperse phase as a function of its volume concentra- 
tion in a coordinate system in which the dispersion is at rest on the average, we obtain 
from (ii) 

G p 
---- (14) 

U. S 

This equation describes, for example, the ascent of a system of continuously generated 
bubbles in a column or the situation in a percolation layer. For the model of a moderately 
dense system [S = (I -- p)-1] expression (14) coincides with the empirical formula verified 
experimentally in [19], in which it has been shown to be in good agreement with the experi- 
mental data of S. S. Kutateladze and V. N. Moskvicheva on the percolation of water drops in 
a mercury bath. Figure 2 shows the results of a comparison between the theory and the 
experiment in [23] on the rising of air bubbles in a column filled with water or a water-- 
glycerin mixture. 

We can readily obtain expressions corresponding to (ii) and (14) in the case where the 
average velocity of the liquid has a nonzero value. For example, in the rising of a bubble 
swarm that is bounded above and below and fills up the entire cross section of the column, 
the fluid, which is at rest on the average outside the swarm, moves downward through it with 
a velocity U* =G/(I -- 0), referred to the total cross section of the column. In this case 
G=o(U -- U*), i.e., in place of (14) we now have 

G _ p ( 1 - - p )  (15 )  
U| S 

The analogous formula with S = (i -- p)-1 has also actually been verified in [19] by compari- 
son with the experimental data of Shulman and Molstedt. 

We emphasize the fact that these results apply only to systems of spherical bubbles 
distributed at random in space, in which case it is permissible to neglect, first, the vari- 
ations of the bubble shape with increasing confinement of the flow (it is expected on the 
basis of general considerations that the bubbles in this case will be better "streamlined," 
corresponding to a certain reduction of the coefficient K with increasing p) and, second, 
any possible structuring of the system, for example by the entrainment of some bubbles in 
the wake zones of others. Both of these neglected effects will necessarily promote a certain 
increase in the velocity of confined bubbles rising in comparison with that calculated above. 
They are conceivably the factors responsible for such an increase observed in certain experi- 
ments [19]. 
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We now discuss bubbles having the shape of a spherical cap, restricting the problem 
to the case of laminar flow around the bubbles, which are followed by domains with closed 
rotational motion of the liquid filling them. The shape of each domain together with the 
bubble itself approaches sphericity [4, 5, 18], while the flow in the spaces between these 
spheres is potential and is identical with the flow between spherical bubbles discussed 
ab ove. 

To determine the rising velocity under confined-flow conditions we use the classical 
method of Davies and Taylor [4]. Along a streamline in a thin layer next to the surface of 
a sphere 

.dows Ows = Ops + dogs, (16) 
Os Os 

where  s i s  the  c o o r d i n a t e  measured  a l o n g  the  s t r e a m l i n e  and gs i s  the  p r o j e c t i o n  o f  g on to  
its direction. Making use of the fact that the pressure in the bubble interior is constant 
in the first approximation, we arrive at the Bernoulli equation in the form 

w2/2 = gR (1 -- cos 0). (17) 

Using (3) and expanding the right-hand side of (17) into a power series in the small quan- 
tity sin2e, we see that for (17) to be satisfied in the vicinity of the point of flow impin- 
gence the following equality must hold: 

U _ 1 U~. 2 (gR)l/2 (18) 
U| S 3 

However, in a system of cap bubbles the quantity p has the significance of the volume 
concentration of spheres comprising both the bubbles themselves and the corresponding rota- 
tional domains, and they greatly exceed (by roughly an order of magnitude) the volume con- 
centration p' of the gaseous phase. Accordingly, the quantity U represents the filtration 
rate of liquid through a swarm of such spheres and is not related to the rising velocity U b 
of the bubbles in a coordinate system in which the liquid is at rest on the average by Eq. 
(6). In a coordinate system in which only the liquid outside the sphere is at rest on the 
average and the bubbles rise with the velocity U' = U/(I -- p), the average velocities of 
the gas and the liquid over the cross section are equal to p'U' and (p -- p')U'. Conse- 

quently, U' =U b+ (p -- p')U', and 

U' I -- (9 -- P') U 1 -- (9 -- 9') 
U--b-b = [1 - -  (P -- P')] -- -- (19) 
U~ U= 1 - - p  U~ (1 - -9 )  S 

For p' << 9 this relation practically coincides with (ii). 

Mass Transfer of Bubbles 

The parameters characterizing the mass transfer of bubbles in a dense swarm with liquid 
flowing around them are readily determined by arguments of the same type as were used above 
in analyzing the external mass transfer in a infiltrable medium. The large bubbles investi- 
gated here are typified by large P~clet numbers, and so it suffices to consider only the 
asymptotic relations for Pe ~ i. 

For a solitary spherical bubble we have [3] 

2 ( 2,89 
g P e ~  -- }f~_ .1 VR-~= ] ~ 1,13, Re~ ~ 1. (20) 

Under confined-flow conditions the diffusivity in a thin diffusion boundary layer at the 
surface of the bubble remains the same as in flow around a solitary bubble; it is equal to 
the molecular diffusivity. However, the velocity of the liquid in this layer varies in 
accordance with expressions (3) and (4). Therefore, 

S h / F ~ b  ~ 1.13 ~ S - ,  (21) 

where Peb is determined relative to the velocity U b. Relations (21), which correspond to 
the models (3) and (4), are shown in Fig. 3. The first coincides with the relation proposed 
earlier in [Ii]. It is instructive to compare Sh with the number Sh~ for natural bubble 
ascent in the field of gravity. Using (ii), from (20) and (21) we obtain Sh = Sh~. 
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For a solitary bubble in the shape of a spherical cap, assuming that mass transfer 
takes place only through its curved frontal surface, we again have the expression Sh~/#P-e~ = 
C, where the constant C depends on specifically what area (the total bubble surface or only 
its frontal part) and what dimension (R or the equivalent radius) are involved in the 
determination of Sh and Pe, as well as on the maximum value of ~, which governs the position 
of the sharp edge of the cap on the total sphere [6, 7]. The latter quantity uniquely deter- 
mines the relationship between p and p', and data pertaining to its dependence on R may be 
found in [5]. Under confined-flow conditions, together with (21), we obtain the following 
by the same arguments as before: 

V~------~ = C S . (22) 
I --(p--p'l 

For p' ~ p this expression coincides with (21). It follows from (19), (20), and (22) that 
for natural bubble ascent in the field of gravity we again have the relation Sh = Sh~. 

The foregoing resuits correspond to models in which the mutual impenetrability of 
spherical inclusions of the disperse phase is either ignored altogether or is described by 
the introduction of a homogeneous layer of pure liquid separating the "test" inclusion from 
the fictitious continuum. Unfortunately, the direct extension of these results to the more 
complex models treated in [14, 15], which correspond to a fictitious medium with strongly 
inhomogeneous properties, is impeded by the fact that the flow of this medium in its region 
of inhomogeneity near the surface of the test inclusion cannot be considered potential in 
general, as is readily verified on the basis of our previous results [12]. 

NOTATION 

C, constant in Eq. (17); D, molecular diffusivity; d, density; E, uniform average-pres- 
sure gradient; F, force of hydrodynamic interaction; F*, interaction force associated with 
viscous stresses; f, function in Eq. (5); G, volume flow rate of gas in a column; g, acceler- 
ation of gravity; K, coefficient in the expression for F*; k, permeability; n =p/V; P, p, 
true and average pressures; Q, q, true and average filtration rates in a porous matrix or 
velocities of liquid between bubbles; R, radius of inclusion in a porous medium or of 
spherical bubbles or the frontal part of cap bubbles; S, function in Eqs. (3) and (4); s, 
coordinate along a streamline; U, average velocity of uniform flow; Ub, bubble rising velo- 
city in a coordinate system in which the liquid is at rest on the average; V, bubble volume; 
Ws, tangential velocity in a surface layer; a, coefficient of p in the expansion of Ub/U~; 
B, function defined in [2]; y, P~clet structure number ~U/D; l, structure microscale; ~, 
fluid viscosity; p, volume concentration of inhomogeneities in a porous medium or of spheres 
comprising bubbles and their rotational wake domains; p', volume concentration of cap bubbles; 
0, angular coordinate; Pe = 2RU/D; Sh = 2RKm/D , Sherwood number; Km, mass-transfer coefficient. 
Indices: 0, continuous phase; i, discontinuous phase; ~, infinitely diluted system (p § 
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MASS TP~NSFER BETWEEN THE GAS AND SOLID 

PARTICLES IN A FLUIDIZED BED 

A. I. Tamarin UDC 662.62:66.096.5 

A model of the boundary layer and condition of suspension of a solid particle by 
a gas flow is used to formulate analytical correlations, which are then compared 
with experiment. 

Fluidization techniques have come increasingly under the scrutiny of power engineers 
in recent years in connection with the growing use of coal as a source of energy in the face 
of tightening environmental-protection demands. 

Coal combustion takes place in a fluidized bed of coarsely disperse material, and the 
process is largely governed by mass transfer toward the surface of the burning particle. 
The mass transfer between the gas and particulate material in a fluidized bed has been 
studied under conditions such that all particles are involved in the transfer process. A 
wealth of experimental data has been accumulated to date and has been generalized in a sur- 
vey paper [i]. Inasmuch as the concentration of coal in the fluidized bed is small, not 
more than 1-2%, the available information is unfortunately of only minor practical interest. 
An exception is the recently reported work of Hsiung and Thodos [2] on the sublimation of 
naphthalene in a fluidized bed of polymer particles. The authors have obtained some inter- 
esting experimental data, but they failed to comprehend ~he mass-transfer laws in the system. 
Our present objective is to bridge this gap and to investigate the mass transfer between the 
particles and the gas in a fluidized bed on the basis of reasonably general properties of 
the system, namely that: 
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